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Abstract

A graph G is said to be F -saturated if G does not contain a copy of F as a subgraph and
G + e contains a copy of F as a subgraph for any edge e contained in the complement of G.
Erdős, Hajnal and Moon in [3] determined the minimum number of edges, sat(n, F ), such that a
graph G on n vertices must have when F is a t-clique. Later, Ollmann [6] determined sat(n, F )
for F = K2,2. Here we give an upper bound for sat(n, F ) when F = Kt

2
the complete t-partite

graph with partite sets of size 2, and prove equality when G is of prescribed minimum degree.

Keywords: saturated graphs, minimum size, minimum degree

1 Introduction

We let G = (V,E) be a graph on |V | = n vertices and |E| = m edges. We denote the complete
graph on t vertices by Kt, and the complete multipartite graph with t partite sets each of size s by
Kt

s. Let F = (V ′, E′) be a graph on |V ′| ≤ n vertices. The graph G is said to be F -saturated if G

contains no copy of F as a subgraph, but for any edge e in the complement of G, the graph G+(e)
contains a copy of F , where G+(e) denotes the graph (V,E ∪ e). The celebrated theorem of Turán
determines the maximum number of edges in a graph that is Kt-saturated. This number, denoted
ex(n,Kt), arises from the consideration of the so-called Turán graph. In 1964 Erdős, Hajnal and
Moon [3] determined the minimum number of edges in a graph that is Kt-saturated. This number,

denoted sat(n,Kt), is (t − 2)(n − 1)−
(
t−2

2

)
and arises from the split graph Kt−2 + K

n−t+2
. Some

years later Ollmann [6] determined the value sat(n,K2,2). Tuza gave a shortened proof of this
same result in [9]. Determining the exact value of this function for a given graph F has been quite
difficult, and is known for relatively few graphs. Kászonyi and Tuza in [5] proved the best known
general upper bound for sat(n,F ).
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We will say u ∼ v (respectively u 6∼ v) if (uv) ∈ E(G) (respectively (uv) 6∈ E(G)). For any
undefined terms we refer the reader to [1].

Theorem 1 (Kászonyi L. and Tuza, Z. [5]) Let F be a family of non-empty graphs. Set

u = min{|U | : F ∈ F , U ⊂ V (F ), F − U is a star (or a star with isolated vertices)}

and

s = min{|E(F − U)| : F ∈ F , U ⊂ V (F ), F − U is a star and |U | = u}.

Furthermore, let p be the minimal number of vertices in a graph F ∈ F for which the minimum
s is attained. If n ≥ p then

sat(n,F) ≤ (u +
s − 1

2
)n −

u(s + u)

2
.

This result shows that sat(n,F) = O(n) where F is a family of graphs. Pikhurko [7] generalized
this result to a family, F ′, of k-uniform hypergraphs by showing that sat(n,F ′) = O(nk−1). For a
further summary of related results we refer the reader to [2].

Here we further refine the idea of sat(n,F ). To state the main result of this paper we define
sat(n,F, δ) to be the minimum number of edges in a graph on n vertices and minimum degree δ

that is F -saturated. We show the following two results.

Theorem 2 For integers t ≥ 3, n ≥ 4t − 4,

sat(n,Kt
2, 2t − 3) = ⌈

(4t − 5)n − 4t2 + 6t − 1

2
⌉.

This immediately implies the following.

Theorem 3 For integers t ≥ 3, n ≥ 4t − 4,

sat(n,Kt
2) ≤ ⌈

(4t − 5)n − 4t2 + 6t − 1

2
⌉.

It is worth noting that the bound provided by Theorem 3 is a slight improvement over that
provided by Theorem 1. We also make the following conjecture.

Conjecture 1 For integers t ≥ 3, n sufficiently large, equality holds in Theorem 3.
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2 General Results

To prove Theorem 2 we will find the following results which are due to Tuza [9] to be useful.

Proposition 1 (Tuza [9]) (a) If F is a k-vertex connected graph, other than the complete graph
on k vertices, then every F -saturated graph G is (k − 1)-vertex connected. (b) If F is a k-edge
connected graph, then every F -saturated graph G is (k − 1)-edge connected.

Proposition 2 (Tuza [9]) (a) Let F be a k-vertex connected graph, and let G be an F -saturated
graph with a set X of k − 1 vertices such that G \ X is disconnected. Denote by G1, . . . Gl the
connected components of G \ X. If X induces a clique, then
(1) G \ Gi is F -saturated for 1 ≤ i ≤ l;
(2) Gi ∪ X induces an F -saturated graph 1 ≤ i ≤ l;
(b) Let F be a k-edge connected graph, and suppose that a graph G has a partition V1 ∪ V2 = V (G)
such that there are just k − 1 edges between V1 and V2. If G is F -saturated, then the subgraph
induced by Vi(i = 1, 2) is also F -saturated.

Proposition 3 If G is a Kt
2-saturated graph (t ≥ 2) with cut-set X of order 2t − 3 and G1, G2,

. . . , Gl, are the components of G\X, then all vertices belonging to X must belong to the Kt
2 formed

upon the addition of an edge (vivj) where vi ∈ Gi, vj ∈ Gj(i 6= j). In other words there exist 3
vertices outside the cutset belonging to any such Kt

2 formed. Additionally, 2 of these 3 vertices are
in the same component of G \ X.

Proof: Let G be a Kt
2-saturated graph. Let vi, vj be in separate components of G \ X. Consider

G + (vivj). Clearly, there exists a vertex z 6= vi, vj in some Gk belonging to the Kt
2 formed upon

the addition of edge (vivj) to G. Vertex z can not be in a component of G \X different from both
vi and vj as then z would be non-adjacent to two vertices in the Kt

2-subgraph. Thus, without loss
of gerenality z must be in say, Gi. Now suppose there exists another vertex w contained in the
Kt

2 in some Gk, 1 ≤ k ≤ l. Similarly, w must be in either Gi or Gj . If w ∈ Gi then as vj is not
adjacent to both z and w, a Kt

2 can not be formed, which is a contradiction. If w ∈ Gj then as
w is not adjacent to either vi or z, again a Kt

2 can not be formed, a contradiction. Hence, there
are at most three vertices outside X (and thus exactly three vertices) in any such Kt

2 and of these
three vertices, two of them are in the same component of G \ X.2

Proposition 4 If G is a Kt
2-saturated graph (t ≥ 2) with a cut-set X of order 2t − 3 then X =

{x1, x2, · · · x2t−3} induces a clique in G.

Proof: Let G be a Kt
2-saturated graph as above and denote the components of G\X by G1, · · ·Gl.

Consider G+(vivj) where vi ∈ Gi, vj ∈ Gj(i 6= j). By Proposition 3, the vertices of X are contained
in the Kt

2 formed upon inserting (vivj). Thus, on the vertices of X, a Kt−2
2

+xk must be present in
G. Now suppose there exists a pair of vertices xi, xj in X that are not adjacent in G. For any pair
vi, vj as considered above, G + (vivj) contains a Kt

2 where xi and xj must be in the same partite
set. This implies that xi, xj are adjacent to all other vertices in the graph G. Thus G \ {xi, xj} is
Kt−1

2
-saturated. Now consider G + (xixj). Upon the addition of edge (xixj) to G, a Kt

2 is formed
as a subgraph where xi and xj lie in different partite sets (as otherwise a Kt

2 would have existed in
G.) Thus, on G \ {xi, xj} there exists a Kt−1

2
, a contradiction.2
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Proposition 5 If G is a Kt
s-saturated graph with t ≥ 3 (t = 2), then G has diameter at most 2

(respectively 3). Furthermore, if t ≥ 3 then G contains s(t − 2) edge disjoint paths of length two
between any two non-adjacent vertices.

Proof: Consider any pair of non-adjacent vertices x, y. Since every edge of Kt
s, t ≥ 3 (t = 2) is

contained in s(t−2) 3-cycles (resp. a 4-cycle) and G+(xy) contains the subgraph Kt
s, the distance

from x to y in G can be no more than 2 (respectively 3.) 2

Proposition 6 If G is a Kt
2 saturated graph with cut set X of order 2t − 3, then all vertices not

adjacent to all of X belong to the same component of G\X. Additionally, this component contains
at least 3 vertices.

Proof: Consider vertices vi ∈ Gi, vj ∈ Gj , i 6= j such that vixk 6∈ E(G) and vjxl 6∈ E(G) for some
xk, xl ∈ X (note xk may equal xl). Now consider G+(vivj). By Proposition 3 there exists a vertex
z in say Gi such that z is in the Kt

2 formed upon the addition of edge (vivj) to G. But then vj is
not adjacent to both xl and z, a contradiction. The same argument holds if z is in Gj . Thus vi

and vj must be in the same component.

To see that this component has at least 3 vertices suppose that it did not. Then consider
G + (vixk) and the Kt

2-subgraph formed. This copy of Kt
2 must, by Proposition 2(2), lie entirely

in X and this special component. But now we reach a contradiction, since X together with this
component do not contain enough vertices.2

For convenience, from this point on we refer to the component described in Proposition 6 as G1.

Proposition 7 If G is a Kt
2-saturated graph with cut set X of order 2t−3, then the components of

G \X can be categorized as follows: (i) there is at most one component as described in Proposition
6, (ii) there is at most one component of order 1, and (iii) the remaining components are single
edges.

Proof: (i) Follows immediately from Proposition 6. To show (ii), consider two components of
order 1, say Gi = {a}, Gj = {b}. The graph G+(ab) must contain, by Proposition 3, a Kt

2 on
X ∪ {a, b}. But this is impossible since |X ∪ {a, b}| = 2t − 1. To show (iii) consider a component
Gk where each vertex in Gk is adjacent to all of X and Gk contains at least 3 vertices. Note that
in such a component there exists 3 vertices that induce at least two edges. This would imply the
existence of a copy of Kt

2 in G, which is a contradiction. Thus, these components have at most two
vertices (and more than one) and therefore must be single edges. This proves (iii).2

Proposition 8 If G is a Kt
2-saturated graph with cutset X of order 2t − 3, then any vertex v in

G1 is adjacent to at least 2t − 4 vertices of X.

Proof: Let v ∈ G1 such that vxi 6∈ E(G) for some xi ∈ X. Let w be in a different component,
say Gj of G \X. By Proposition 3, G + (vw) contains a Kt

2 which uses all of X. Hence, v must be
adjacent to all other vertices of X. 2
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2.1 Proof of Main Result

We are now ready to prove the main result.

Proof of Theorem 2 : Let G be a Kt
2-saturated graph on n ≥ 4t−4 vertices with δ(G) = 2t−3.

We first note that in such a graph, G + (v1v2) contains a copy of Kt
2 where v1 and v2 are in

different partite sets of Kt
2, as otherwise a copy of Kt

2 would have already existed in G. If v1 is in a
partite set of Kt

2 we will refer to the other vertex in that partite set as v1’s mate. For convenience
we will refer to v1 as being in the first partite set, v2 the second partite set. Also, as Kt

2 is a
(2t − 2)-connected graph, Proposition 1 implies that G is (2t − 3)-connected, thus the minimum
degree of any Kt

2-saturated graph is at least 2t − 3.

With reference to Proposition 7, we refer to a component of order 1 as a Type I component, a
component of order 2 as a Type II component and a component of order 3 or more as a Type III
component. Let y be a vertex of degree 2t − 3 and set N(y) = X. Note that X is a cut-set of size
2t − 3 and thus, by Proposition 4, the graph induced by X is complete. By Proposition 7 there is
at most one component of Type III. Thus, there are two possibilities for the structure of G.

Case 1: Suppose G contains a component, G1, of Type III

We begin by setting the number of vertices in G1 equal to g1 ≥ 3, and describe the structure
of G1 and the minimum number of edges it must contain. First note that the number of Type
II components is k = n−2t+3−1−g1

2
(and thus n and g1 have the same parity). Furthermore, by

Proposition 2, G1 ∪ X is a Kt
2-saturated graph. Denote by A the vertices of G1 that are adjacent

to all of X. Denote by X1 the vertices of G1 that are adjacent to x2, x3, · · · , x2t−3, but not x1.
Similarly, define Xi for 2 ≤ i ≤ 2t − 3. Note by Proposition 8, there are no other vertices of G1.
First note that if A is non-empty then A induces a 1-regular graph in G, since for any vertex a ∈ A,
the graph G + (ya) contains a Kt

2, and thus a must be adjacent to a vertex in A which is y′s mate.
Further, there cannot exist two incident edges, say (a1a2) and (a2a3), in A as otherwise G would
contain Kt

2 as a subgraph. Namely a Kt
2 would exist on X ∪ {a1, a2, a3}.

Furthermore, every vertex v ∈ G1 \A is adjacent to exactly one vertex a ∈ A. To see this is true,
first note that if v ∈ G1 \ A were adjacent to two vertices a1, a2 in A, then a Kt

2 would be present
in G, namely a Kt

2 would exist on X ∪{v, a1, a2}. To see that v is adjacent to at least one vertex in
A, note that G+(vy) creates a Kt

2 as a subgraph involving the 2t−1 vertices v, y, x1, x2, · · · , x2t−3.
The remaining vertex in the Kt

2 subgraph which is not adjacent to y (as y has no other adjacencies
in G + (vy)) must be y′s mate. Thus, this vertex must be adjacent to all others, which includes all
of X, and thus this mate must be in A. This also shows that A cannot be empty. Together with
the fact that A is 1-regular, this implies |A| ≥ 2.

We now consider the maximum number of vertices x ∈ V (G1 \ A) such that dG1
(x) = 1. Let

v,w ∈ G1 \ A with dG1
(v) = dG1

(w) = 1. Then we consider the following two possibilities. Note
that these conditions imply that vw 6∈ E(G), as v’s one edge in G1 must be to A.

Subcase(i). Suppose v,w ∈ Xi for some i, then the neighbors of v and w which are in A are
adjacent.

Consider G + (vw) and the Kt
2 subgraph formed. The vertex xi cannot be in the Kt

2 formed
as xi is not adjacent to either v or w. This implies that v and w cannot share a single neighbor
in A as then the joint neighborhood of v and w would contain only 2t − 3 vertices and any two
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non-adjacent vertices in G must have a joint neighborhood of at least 2t−2 vertices. Thus suppose
v ∼ a1, w ∼ a2 for some a1, a2 ∈ A. Additionally, a1 ∼ a2 since the joint neighborhood is exactly
2t− 2 vertices and these two vertices lie in the symmetric difference of the joint neighborhood of v

and w. In other words, a1 is the mate of w and a2 is the mate of v and thus the edge (a1a2) must
exist.

Subcase (ii). Suppose v ∈ Xi, w ∈ Xj , i 6= j, then v and w share a common neighbor in A.

Without loss of generality suppose v ∈ X1, w ∈ X2. Further, suppose v ∼ a1 and w ∼ a2 for
some a1, a2 ∈ A, a1 6= a2. Now consider G + (vw). Considering v, we see that the Kt

2 formed
must contain v,w, a1, x2, x3, · · · , x2t−3. However, x2 and a1 are not adjacent to w, a contradiction.
Therefore v,w must share the same neighbor in A.

For t ≥ 3, (i) and (ii) together imply that the maximum number of vertices x ∈ G1 such that
dG1

(x) = 1 is 2t − 3. Furthermore, this occurs when the 2t − 3 vertices are each in different Xi.

Once again we count the edges of G, and noting that g1 := |A| + | ∪2t−3

i=1
Xi|. We explain the

equation below. Beginning with line (1), recall that X is complete. Next, note that in this case each
vertex in G2, G3, . . . Gl is adjacent to each vertex in X and that each of these Type II components
contains one edge. Next line (2), each vertex in A is adjacent to all of X, and A induces a 1-factor.
Next, each vertex in ∪2t−3

i=1
Xi is adjacent to 2t − 4 vertices in X, and one vertex in A. Finally

line (3), since there are at most 2t − 3 vertices, {u1, u2, . . . u2t−3} ∈ ∪2t−3

i=1
Xi with dG1

(ui) = 1 the
remainder must have degree at least two. Thus,

|E(G)| ≥

(
2t − 3

2

)

+ (n − 2t + 3 − g1)(2t − 3) +
n − 2t + 3 − 1 − g1

2
(1)

+|A|(2t − 3) +
|A|

2
+ (| ∪2t−3

i=1
Xi|)(2t − 4) + (| ∪2t−3

i=1
Xi|) (2)

+⌈
(| ∪2t−3

i=1
Xi|) − min{(2t − 3), | ∪2t−3

i=1
Xi|}

2
⌉ (3)

= ⌈
(4t − 5)n − 4t2 + 8t − 4 − min{(2t − 3), | ∪2t−3

i=1
Xi|}

2
⌉ (4)

and when n ≥ 4t−3, the minimum is achieved when there exists at least 2t−3 vertices in ∪2t−3

i=1
Xi.

Thus,

|E(G)| ≥ ⌈
(4t − 5)n − 4t2 + 6t − 1

2
⌉. (5)

Case 2: Suppose G contains no component of Type III.

If n − 2t + 3 is even (thus n is odd) then we reach a contradiction as n−2t+2

2
(the number, k,

of Type II components) must be an integer. Thus n − 2t + 3 is odd and k = n−2t+2

2
. We now

count the number of edges G must contain. First, recall that X is complete. Next, note that in
this case each vertex in G \X is adjacent to each vertex in X. Finally, note that each of the Type
II components contains one edge. Thus,
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X1; X2; : : : X2t�3
Type III Componenta2a1G1

x1; x2; : : : x2t�3 X = K2t�3
Type II Components Type I Componenty

Not present when n is even.
Figure 1: Kt

2-saturated graph

|E(G)| =

(
2t − 3

2

)

+ (n − 2t + 3)(2t − 3) +
n − 2t + 2

2
(6)

=
(4t − 5)n − 4t2 + 8t − 4

2
. (7)

The number of edges obtained in the Case 1 is obviously less than in Case 2. We will now show
that there exists a graph G that contains the number of edges as given by the lower bound in Case
1 and which is Kt

2-saturated.

It suffices to now describe the structure of G1. The set A contains two adjacent vertices a1, a2,
with a1 adjacent to all of ∪2t−3

i=1
Xi. In the case that n is odd, each Xi contains a vertex ui such

that dG1
(ui) = 1. In the case that n is even, all but one of the Xi contain such a vertex. The

remainder of the vertices in a given Xi induce a 1-factor. (That is we forbid edges zizj where
zi ∈ Xi, zj ∈ Xj , i 6= j.) We have now completely described the structure of the graph G. Figure 1
helps to illustrate this.

We will now show that the minimal graph obtained in this case is indeed Kt
2-saturated, and thus

the result will be established.
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Claim 1 The graph G contains no copy of Kt
2.

First note that as the degree of y is 2t − 3, it cannot be contained in a copy of Kt
2. The same

is true for any ui ∈ ∪2t−3

i=1
Xi such that dG1

(ui) = 1. If the copy of Kt
2 contained all the vertices of

X it would need to contain three vertices at distance two from y. These three vertices would need
to be in the same component (as they must induce at least two edges), thus must be in G1. If two
vertices from A were used then there must exist some v ∈ ∪2t−3

i=1
Xi that is adjacent to both of them

as v is nonadjacent to some xi ∈ X. However, v has only one edge to A. If one vertex of A were
used, then the two remaining vertices, v,w can not come from the same Xi as v,w 6∼ xi, and thus
v ∈ Xi, w ∈ Xj , i 6= j. However, v 6∼ xi, w by construction. Thus all three vertices must come
from ∪2t−3

i=1
Xi. Each would need to be in a different Xi, and thus must induce a triangle. However,

this is forbidden from happening by our construction.

Thus, any copy of Kt
2 would contain at most 2t − 4 vertices of X. Then at least 4 vertices of

Kt
2 must come from G \ X, and must be in the same component and thus lie in G1. Furthermore,

any four vertices of Kt
2 contain a K2,2 and a careful consideration of G1 shows that no such K2,2

exists. This proves the claim.2

Claim 2 For any edge e in the complement of G, G + e contains a copy of Kt
2.

For convenience, let a1, a2 ∈ A, zi,1, zi,2 ∈ Xi, zj,1 ∈ Xj , vj , wj ∈ Gj , vk ∈ Gk (j, k 6= 1). We
may assume that dG1

(zi,1) = 2 and will denote its neighbor in Xi by zi,3. Also recall that for all
x ∈ ∪2t−3

i=1
Xi we have x adjacent to a1.

To prove the claim we will show that for any edge e, the graph G + e contains a copy of Kt
2 and

explicitly give each of the partite sets and their elements.

First we consider edges between components.

Case: Let e = vjvk, then Kt
2 is contained in the subgraph induced by the following partite sets

{{wj , vk}, {vj , x1}, {x2, x3}, . . . {x2t−4, x2t−3}}.

Case: Let e = vka1, then Kt
2 is contained in the subgraph induced by the following partite sets

{{a2, vk}, {a1, x1}, {x2, x3}, . . . {x2t−4, x2t−3}}.

Case: Let e = vka2, then Kt
2 is contained in the subgraph induced by the following partite sets

{{a1, vk}, {a2, x1}, {x2, x3}, . . . {x2t−4, x2t−3}}.

Case: Let e = vkzi,1, then Kt
2 is contained in the subgraph induced by the following partite sets

{{a1, vk}, {zi,1, xi}, {x1, x2}, . . . {x2t−4, x2t−3}}.

Next we consider edges from the cut-set to G1.

Case: Let e = xizi,2, then Kt
2 is contained in the subgraph induced by the following partite sets

{{zi,2, a2}, {xi, a1},

omits xi
︷ ︸︸ ︷

{x1, x2}, . . . {x2t−4, x2t−3}}.

This leaves us to consider edges within G1.

Case: Let e = a2zi,2, then Kt
2 is contained in the subgraph induced by the following partite sets

{{zi,2, xi}, {a1, a2},

omits xi
︷ ︸︸ ︷

{x1, x2}, . . . {x2t−4, x2t−3}}.
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Case: Let e = zi,1zi,2, then Kt
2 is contained in the subgraph induced by the following partite

sets {{zi,1, a1}, {zi,2, zi,3},

omits xi
︷ ︸︸ ︷

{x1, x2}, . . . {x2t−4, x2t−3}}.

Case: Let e = zi,1, zj,1, then Kt
2 is contained in the subgraph induced by the following partite

sets {{zi,1, xi}, {zj,1, xj}, {a1, x1},

omits xi, xj , x1

︷ ︸︸ ︷

{x2, x3}, . . . {x2t−4, x2t−3}}.

This completes the proof of Claim 2, and the proof of Theorem 2.2

We now give further evidence to support Conjecture 1. To do this we begin by generalizing a
Theorem used by Duffus and Hanson in [4].

Theorem 4 For integers t ≥ 3, s ≥ 1, δ ≥ s(t − 1) − 1, n ≥ st,

sat(n,Kt
s, δ) ≥

δ + s(t − 2)

2
(n − δ − 1) + δ + s2

(
t − 2

2

)

+ s(s − 1)(t − 2). (8)

Proof: Let y be a vertex of minimum degree δ and X the set of δ vertices adjacent to y. Let Z

denote the remaining n− δ−1 vertices, which are at distance two (by Proposition 5) from y. First,
X contains a copy of Kt−2

s + Ks−1 since G + (yv) contains a Kt
s, v ∈ Z, for any v 6∼ y. Next, each

v ∈ Z must be adjacent to all of the vertices of a Kt−2
s in X since G + (yv) creates a copy of Kt

s.
Therefore, by summing the degrees of the vertices in each set we obtain,

Σx∈Gd(x) ≥ δ + {δ + s(t − 2)(n − δ − 1) + s(t − 2)[s(t − 3) + (s − 1)] + (s − 1)[s(t − 2)]}

+{(n − δ − 1)δ}.

The lower bound thus follows.2

We now use Theorem 4 in support of Conjecture 1. Evaluating Equation 8 for s = 2 and δ ≥ 2t
we find that the coefficient in n is at least 4t−4

2
which is greater than the coefficient in n given by

Theorem 2, which is 4t−5

2
. Thus for n sufficiently large the number of edges in an Kt

2-saturated
graph with minimum degree δ ≥ 2t is strictly greater than the number of edges in an Kt

2-saturated
graph with minimum degree 2t − 3.

This leads to another conjecture (which generalizes one given by Bollobás in [2]), the proof of
which would settle Conjecture 1.

Conjecture 2 Given a fixed graph F , for n sufficiently large the function sat(n,F, δ) is monoton-
ically increasing in δ.

We note that the word “monotonically” can not be replaced by “strictly.” One can see this by
examining the extremal graphs for K2,2 provided by Ollmann [6].
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